Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770233

RESUMO

Polarization doping in a GaN-InN system with a graded composition layer was studied using ab initio simulations. The electric charge volume density in the graded concentration part was determined by spatial potential dependence. The emerging graded polarization charge was determined to show that it could be obtained from a polarization difference and the concentration slope. It was shown that the GaN-InN polarization difference is changed by piezoelectric effects. The polarization difference is in agreement with the earlier obtained data despite the relatively narrow bandgap for the simulated system. The hole generation may be applied in the design of blue and green laser and light-emitting diodes.

2.
Materials (Basel) ; 15(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454453

RESUMO

In this paper, we present a comparative analysis of the optical properties of non-polar and polar GaN/AlGaN multi-quantum well (MQW) structures by time-resolved photoluminescence (TRPL) and pressure-dependent studies. The lack of internal electric fields across the non-polar structures results in an improved electron and hole wavefunction overlap with respect to the polar structures. Therefore, the radiative recombination presents shorter decay times, independent of the well width. On the contrary, the presence of electric fields in the polar structures reduces the emission energy and the wavefunction overlap, which leads to a strong decrease in the recombination rate when increasing the well width. Taking into account the different energy dependences of radiative recombination in non-polar and polar structures of the same geometry, and assuming that non-radiative processes are energy independent, we attempted to explain the 'S-shape' behavior of the PL energy observed in polar GaN/AlGaN QWs, and its absence in non-polar structures. This approach has been applied previously to InGaN/GaN structures, showing that the interplay of radiative and non-radiative recombination processes can justify the 'S-shape' in polar InGaN/GaN MQWs. Our results show that the differences in the energy dependences of radiative and non-radiative recombination processes cannot explain the 'S-shape' behavior by itself, and localization effects due to the QW width fluctuation are also important. Additionally, the influence of the electric field on the pressure behavior of the investigated structures was studied, revealing different pressure dependences of the PL energy in non-polar and polar MQWs. Non-polar MQWs generally follow the pressure dependence of the GaN bandgap. In contrast, the pressure coefficients of the PL energy in polar QWs are highly reduced with respect to those of the bulk GaN, which is due to the hydrostatic-pressure-induced increase in the piezoelectric field in quantum structures and the nonlinear behavior of the piezoelectric constant.

3.
Materials (Basel) ; 14(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34501025

RESUMO

In this paper, ab initio calculations are used to determine polarization difference in zinc blende (ZB), hexagonal (H) and wurtzite (WZ) AlN-GaN and GaN-InN superlattices. It is shown that a polarization difference exists between WZ nitride compounds, while for H and ZB lattices the results are consistent with zero polarization difference. It is therefore proven that the difference in Berry phase spontaneous polarization for bulk nitrides (AlN, GaN and InN) obtained by Bernardini et al. and Dreyer et al. was not caused by the different reference phase. These models provided absolute values of the polarization that differed by more than one order of magnitude for the same material, but they provided similar polarization differences between binary compounds, which agree also with our ab initio calculations. In multi-quantum wells (MQWs), the electric fields are generated by the well-barrier polarization difference; hence, the calculated electric fields are similar for the three models, both for GaN/AlN and InN/GaN structures. Including piezoelectric effect, which can account for 50% of the total polarization difference, these theoretical data are in satisfactory agreement with photoluminescence measurements in GaN/AlN MQWs. Therefore, the three models considered above are equivalent in the treatment of III-nitride MQWs and can be equally used for the description of the electric properties of active layers in nitride-based optoelectronic devices.

5.
Phys Chem Chem Phys ; 19(43): 29676-29684, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29085928

RESUMO

Thermodynamic foundations of ab initio modeling of vapor-solid and vapor-surface equilibria are introduced. The chemical potential change is divided into enthalpy and entropy terms. The enthalpy path passes through vapor-solid transition at zero temperature. The entropy path avoids the singular point at zero temperature passing a solid-vapor transition under normal conditions, where evaporation entropy is employed. In addition, the thermal changes are calculated. The chemical potential difference contribution of the following terms: vaporization enthalpy, vaporization entropy, the temperature-entropy related change, the thermal enthalpy change and mechanical pressure is obtained. The latter term is negligibly small for the pressure typical for epitaxy. The thermal enthalpy change is two orders smaller than the first three terms which have to be taken into account explicitly. The configurational vaporization entropy change is derived for adsorption processes. The same formulation is derived for vapor-surface equilibria using hydrogen at the GaN(0001) surface as an example. The critical factor is the dependence of the enthalpy of evaporation (desorption energy) on the pinning of the Fermi level bringing a drastic change of the value from 2.24 eV to -2.38 eV. In addition it is shown that entropic contributions considerable change the hydrogen equilibrium pressure over the GaN(0001) surface by several orders of magnitude. Thus a complete and exact formulation of vapor-solid and vapor-surface equilibria is presented.

6.
Phys Chem Chem Phys ; 19(13): 9149-9155, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28318002

RESUMO

A new scenario for the thermalization process of adsorbates at solid surfaces is proposed. The scenario is based on the existence of an electric dipole layer in which the electron wavefunctions extend over the positive ions, creating a strong local electric field which drags the electrons into the solid interior and repels the positive ions. During adsorption the electrons tunnel into the solid interior, conveying the excess energy. The positive ions are retarded by the field, losing the excess kinetic energy, and are located smoothly into the adsorption sites. In such a scheme, the excess energy is not dissipated locally, avoiding melting or the creation of defects which is in accordance with experiments. The scenario is supported by ab initio calculation results, including density function theory of the slabs representing the AlN surface and the Schrodinger equation for the time evolution of hydrogen-like atoms at the solid surface.

7.
J Phys Chem B ; 115(15): 4359-68, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21438507

RESUMO

Determination of shear viscosity of molecular nitrogen (N(2)) by molecular dynamics (MD) in the high density range needs explicit incorporation of the rotational motion and therefore precise knowledge of angular dependence of N(2)-N(2) intermolecular potential. Newly designed Couette flow nonequilibrium molecular dynamic (NEMD) simulation procedure employs corrugated moving boundary, coupling the moving walls to translational and rotational motion exactly. Low density data on nitrogen viscosity show good agreement between MD data and experiment, confirming the radial dependence of the potential derived from quantum mechanical (QM) high precision calculations (coupled-cluster singles-and-doubles with a perturbative triples corrections [CCSD(T)]). Additionally, the angular dependence of the potential is verified using shear viscosity data for high density region, obtained from newly developed molecular dynamics (MD) simulations. It was demonstrated that the corrugated wall flow simulations provide results that are independent of the details of wall potential, fulfilling a basic requirement for application of MD simulations. These results are in good agreement with the equilibrium molecular dynamics (EMD) viscosity, derived from the Green-Kubo formula. Derived analytical dependence of the shear viscosity on the density and temperature shows that the MD data are in good agreement with experiment. Thus, MD simulations indicate that the CCSD(T) potential angular form is sufficiently precise for determination of the viscosity in a wide range of temperature and pressure.

8.
J Chem Phys ; 126(19): 194501, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17523816

RESUMO

Quantum mechanical (QM) high precision calculations were used to determine N(2)-N(2) intermolecular interaction potential. Using QM numerical data the anisotropic potential energy surface was obtained for all orientations of the pair of the nitrogen molecules in the rotation invariant form. The new N(2)-N(2) potential is in reasonably good agreement with the scaled potential obtained by van der Avoird et al. using the results of Hartree-Fock calculations [J. Chem. Phys. 84, 1629 (1986)]. The molecular dynamics (MD) of the N(2) molecules has been used to determine nitrogen equation of state. The classical motion of N(2) molecules was integrated in rigid rotor approximation, i.e., it accounted only translational and rotational degrees of freedom. Fincham [Mol. Simul. 11, 79 (1993)] algorithm was shown to be superior in terms of precision and energy stability to other algorithms, including Singer [Mol. Phys. 33, 1757 (1977)], fifth order predictor-corrector, or Runge-Kutta, and was therefore used in the MD modeling of the nitrogen pressure [S. Krukowski and P. Strak, J. Chem. Phys. 124, 134501 (2006)]. Nitrogen equation of state at pressures up to 30 GPa (300 kbars) and temperatures from the room temperature to 2000 K was obtained using MD simulation results. Results of MD simulations are in very good agreement (the error below 1%) with the experimental data on nitrogen equation of state at pressures below 1 GPa (10 kbars) for temperatures below 1800 K [R. T. Jacobsen et al., J. Phys. Chem. Ref. Data 15, 735 (1986)]. For higher temperatures, the deviation is slightly larger, about 2.5% which still is a very good agreement. The slightly larger difference may be attributed to the vibrational motion not accounted explicitly by rigid rotor approximation, which may be especially important at high temperatures. These results allow to obtain reliable equation of state of nitrogen for pressures up to 30 GPa (300 kbars), i.e., close to molecular nitrogen stability limit, determined by Nellis et al. [Phys. Rev. Lett. 53, 1661 (1984)].

9.
J Chem Phys ; 124(13): 134501, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16613455

RESUMO

Nitrogen equation of state at pressures up to 30 GPa (300 kbars) and temperatures above 800 K was studied by molecular dynamics (MD) simulations. The dynamics of the N(2) molecules is treated in hard rotor approximation, i.e., it accounts both translational and rotational degrees of freedom. The rotational motion of the N(2) molecule is treated assuming constant moment of inertia of the nitrogen molecule. The new MD program fully accounts anisotropic molecular nitrogen interaction. The N(2)-N(2) interaction potential has been derived by van der Avoird et al. [J. Chem. Phys. 84, 1629 (1986)] using the results of high precision Hartree-Fock ab initio quantum mechanical calculations. The potential, fully accounts rotational symmetry of the N(2)-N(2) system, by employing 6-j Wigner symbols, i.e., preserving full rotational symmetry of the system. Various numerical algorithms were tested, in order to achieve the energy preservation during the simulation. It has been demonstrated that the standard Verlet algorithm was not preserving the energy for the standard MD time step, equal to 5x10(-16) s. Runge-Kutta fourth order method was able to preserve the energy within 10(-4) relative error, but it requires calculation of the force four times for each time step and therefore it is highly inefficient. A predictor-corrector method of the fifth order (PC5) was found to be efficient and precise and was therefore adopted for the simulation of the molecular nitrogen properties at high pressure. Singer and Fincham algorithms were tested and were found to be as precise as PC5 algorithm and they were also used in the simulation of the equation of state. Results of MD simulations are in very good agreement with the experimental data on nitrogen equation of state at pressures below 1 GPa (10 kbars). For higher pressures, up to 30 GPa (300 kbars), i.e., close to molecular nitrogen stability limit, determined by Nellis et al. [Phys. Rev. Lett. 85, 1262 (1984)], the obtained numerical results provide new data of the experimentally unexplored region. These data were formulated in the analytical form of pressure-density-temperature equation of state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...